Difference between revisions of "PMOS logic"
m |
m (1 revision) |
(No difference)
|
Latest revision as of 13:53, 10 December 2011
P-type metal-oxide-semiconductor logic uses p-type metal-oxide-semiconductor field effect transistors (MOSFETs) to implement logic gates and other digital circuits. PMOS transistors have four modes of operation: cut-off (or subthreshold), triode, saturation (sometimes called active), and velocity saturation.
The p-type MOSFETs are arranged in a so-called "pull-up network" (PUN) between the logic gate output and positive supply voltage, while a resistor is placed between the logic gate output and the negative supply voltage. The circuit is designed such that if the desired output is high, then the PUN will be active, creating a current path between the positive supply and the output.
While PMOS logic is easy to design and manufacture (a MOSFET can be made to operate as a resistor, so the whole circuit can be made with PMOS FETs), it has several shortcomings as well. The worst problem is that a DC current flows through a PMOS logic gate when the PUN is active, that is whenever the output is high. This leads to static power dissipation even when the circuit sits idle.
Also, PMOS circuits are slow to transition from high to low. When transitioning from low to high, the transistors provide low resistance, and the capacitative charge at the output accumulates very quickly (similar to charging a capacitor through a very low resistor). But the resistance between the output and the negative supply rail is much greater, so the high to low transition takes longer (similar to discharge a capacitor through a high resistor value). Using a resistor of lower value will speed up the process but also increases static power dissipation.
Additionally, the asymmetric input logic levels make PMOS circuits susceptible to noise.
Though initially easier to manufacture, PMOS logic was later supplanted by NMOS logic because NMOS is faster than PMOS. Modern fabs use CMOS, which uses both PMOS and NMOS transistors together. Static CMOS logic leverages the advantages of both by using NMOS and PMOS together in the wafer.
ru:PMOS