Difference between revisions of "1,2-Bis(diphenylphosphino)ethane"

From Self-sufficiency
Jump to: navigation, search
(Coordination chemistry: remove general statement - not specific to this cpd)
 
m (1 revision)
 
(No difference)

Latest revision as of 19:14, 21 September 2010

1,2-Bis(diphenylphosphino)ethane
File:DPPE structure.svg
dppe
style="background: #F8EABA; text-align: center;" colspan="2" | Identifiers
CAS number 1663-45-2 YesY
style="background: #F8EABA; text-align: center;" colspan="2" | Properties
Molecular formula C26H24P2
Molar mass 398.42 g/mol
Melting point

140-142 °C

 YesY (what is this?)  (verify)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

1,2-Bis(diphenylphosphino)ethane (dppe) is a commonly used bidentate ligand in coordination chemistry. Dppe is almost invariably chelated, although there are examples of unidentate (e.g., W(CO)5(dppe)) and of bridging behavior.[1]

Preparation

The preparation of dppe is conducted via the alkylation of NaPPh2 which is typically prepared from triphenylphosphine (P(C6H5)3) as follows:[2][3]

1. P(C6H5)3 + 2 Na → NaP(C6H5)2 + NaC6H5

NaP(C6H5)2, which is readily air-oxidized, is treated with 1,2-dichloroethane (ClCH2CH2Cl) to give dppe:

2. 2 NaP(C6H5)2 + ClCH2CH2Cl → (C6H5)2PCH2CH2P(C6H5)2 + 2 NaCl

Reactions

Reduction

The reduction of dppe by lithium to give PhHP(CH2)2PHPh has been reported.[4]

1. Ph2P(CH2)2PPh2 + 4 Li → PhLiP(CH2)2PLiPh + 2 PhLi

Hydrolysis by water gives:

2. PhLiP(CH2)2PLiPh + 2 PhLi + 4H2O → PhHP(CH2)2PHPh + 4 LiOH + 2C6H6

Oxidation

Treatment of dppe with conventional oxidants such as hydrogen peroxide (H2O2), aqueous bromine (Br2), etc., always produces dppeO in low yield (e.g., 13%) as a result of non-selective oxidation leading to mixtures of the starting material, the monoxide, and dioxide.[5] Selective mono-oxidation of dppe can be achieved by reaction with PhCH2Br to give dppeO.

3. Ph2P(CH2)2PPh2 + PhCH2Br → Ph2P(CH2)2PPh2(CH2Ph)+Br-

This is followed by purification and alkaline catalyzed hydrolysis of the mono-phosphonium salt.

4. Ph2P(CH2)2PPh2(CH2Ph)+Br- + NaOH + H2O → Ph2P(CH2)2P(O)Ph2

Coordination chemistry

Coordination complexes of dppe, and diphosphine ligands in general, are almost entirely used as homogeneous catalysts for a wide range of reactions. Two simple coordination complexes of dppe include Pd(dppe)2 and Ir(dppe)2. Pd(dppe)2 can be prepared by reduction of Pd(II) with NaBH4. It is most conveniently prepared, however, in situ from Pd(OAc)2.[5]

References

  1. Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed.; Wiley-Interscience Publications: New York, NY, 1980; p.246. ISBN 0-471-02775-8
  2. W. Hewertson and H. R. Watson (1962). "283. The preparation of di- and tri-tertiary phosphines". J. Chem. Soc.: 1490–1494. doi:10.1039/JR9620001490. 
  3. Girolami, G.; Rauchfuss, T.; Angelici, R. Synthesis and Technique in Inorganic Chemistry, 3rd ed.; University Science Books: Sausalito, CA, 1999; pp. 85-92. ISBN 0-935702-48-2
  4. Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found.
  5. 5.0 5.1 Encyclopedia of Reagents for Organic Synthesis 2001 John Wiley & Sons, Ltd
de:1,2-Bis(diphenylphosphino)ethan