Implications of nanotechnology

From Self-sufficiency
Revision as of 20:33, 20 September 2010 by Jontas (Talk | contribs) (1 revision)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Part of a series of articles on the

Implications of
Nanotechnology

Health implications
Nanotoxicology, Nanomedicine
Environmental implications
Societal implications
Applications
Regulation

See also
Nanotechnology

Part of a series of articles on

Nanotechnology

History
Implications
Applications
Regulation
Organizations
Popular culture
List of topics

Nanomaterials

Fullerene
Carbon Nanotubes
Nanoparticles

Nanomedicine

Nanotoxicology
Nanosensor

Molecular self-assembly

Self-assembled monolayer
Supramolecular assembly
DNA nanotechnology

Nanoelectronics

Molecular electronics
Nanolithography

Scanning probe microscopy

Atomic force microscope
Scanning tunneling microscope

Molecular nanotechnology

Molecular assembler
Nanorobotics
Mechanosynthesis

Nanotechnology Portal

The implications of nanotechnology run the gamut from the medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, military applications, and communications.

Benefits of nanotechnology include improved manufacturing methods, water purification systems, energy systems, physical enhancement, nanomedicine, better food production methods and nutrition and large scale infrastructure auto-fabrication.[vague] Nanotechnology's reduced size may allow for automation of tasks which were previously inaccessible due to physical restrictions, which in turn may reduce labor, land, or maintenance requirements placed on humans.

Risks include environmental, health, and safety issues if negative effects of nanoparticles are overlooked before they are released; transitional effects such as displacement of traditional industries as the products of nanotechnology become dominant; military applications such as biological warfare and implants for soldiers; and surveillance through nano-sensors, which are of concern to privacy rights advocates.

There is debate about whether nanotechnology merits special government regulation, and regulatory bodies such as the United States Environmental Protection Agency and the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks of nanoparticles. The organic food sector has been the first to act with the regulated exclusion of engineered nanoparticles from certified organic produce in Australia and the UK [1].

Overview

Projected benefits

Nano optimists, including many governments, see nanotechnology delivering benefits such as:

  • environmentally benign material abundance for all by providing universal clean water supplies
  • atomically engineered food and crops resulting in greater agricultural productivity with fewer labour requirements
  • nutritionally enhanced interactive ‘smart’ foods.[2]
  • cheap and powerful energy generation
  • clean and highly efficient manufacturing
  • radically improved formulation of drugs, diagnostics and organ replacement
  • much greater information storage and communication capacities
  • interactive ‘smart’ appliances; and increased human performance through convergent technologies[3][4]

Potential risks

Potential risks of nanotechnology can broadly be grouped into four areas:

  • Health issues - the effects of nanomaterials on human biology
  • Environmental issues - the effects of nanomaterials on the environment
  • Societal issues - the effects that the availability of nanotechnological devices will have on politics and human interaction
  • "Grey goo" - the specific risks associated with the speculative vision of molecular nanotechnology

Health and safety implications from nanoparticles

The mere presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard. In this case it can be called nanopollution.

In addressing the health and environmental impact of nanomaterials we need to differentiate between two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle).

There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.

Nanoparticles are very different from their everyday counterparts, so their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.

To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles almost never be monodisperse [1], but contain instead a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties from smaller ones. Also, nanoparticles show a tendency to aggregate, and such aggregates often behave differently from individual nanoparticles.

The lethal dose over six months for lab rats, of different kinds of nanoparticles are often characterized by a Skov Kjaer index, named after the scientist Kasper Skov Kjaer.[5]

The National Institute for Occupational Safety and Health is conducting research on how nanoparticles interact with the body’s systems and how workers might be exposed to nano-sized particles in the manufacturing or industrial use of nanomaterials. NIOSH currently offers interim guidelines for working with nanomaterials consistent with the best scientific knowledge.[6]

In "The Consumer Product Safety Commission and Nanotechnology,"[7] E. Marla Felcher suggests that the Consumer Product Safety Commission, which is charged with protecting the public against unreasonable risks of injury or death associated with consumer products, is ill-equipped to oversee the safety of complex, high-tech products made using nanotechnology.

Longer-term concerns center on the implications that new technologies will have for society at large, and whether these could possibly lead to either a post scarcity economy, or alternatively exacerbate the wealth gap between developed and developing nations. The effects of nanotechnology on the society as a whole, on human health and the environment, on trade, on security, on food systems and even on the definition of "human", have not been characterized or politicized.

Health issues

The health implications of nanotechnology are the possible effects that the use of nanotechnological materials and devices will have on human health. As nanotechnology is an emerging field, there is great debate regarding to what extent nanotechnology will benefit or pose risks for human health. Nanotechnology's health implications can be split into two aspects: the potential for nanotechnologcal innovations to have medical applications to cure disease, and the potential health hazards posed by exposure to nanomaterials.

Nanotoxicology is the field which studies potential health risks of nanomaterials. The extremely small size of nanomaterials means that they are much more readily taken up by the human body than larger sized particles. How these nanoparticles behave inside the organism is one of the big issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately adsorb onto their surface some of the macromolecules they encounter. The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account. Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.

Nanomedicine is the medical application of nanotechnology.[8] The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future.[9][10] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[11] Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Further down the line, the speculative field of molecular nanotechnology believes that cell repair machines could revolutionize medicine and the medical field.

Environmental issues

File:No Nano Grenoble P1150729.jpg
Groups opposing the installation of nanotechnology laboratories in Grenoble, France, have spraypainted their opposition on a former fortress above the city

Nanopollution is a generic name for all waste generated by nanodevices or during the nanomaterials manufacturing process. This kind of waste may be very dangerous because of its size. It can float in the air and might easily penetrate animal and plant cells causing unknown effects. Most human-made nanoparticles do not appear in nature, so living organisms may not have appropriate means to deal with nanowaste.

To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle. Environmental assessment is justified as nanoparticles present novel (new) environmental impacts. Scrinis raises concerns[12] about nano-pollution, and argues that it is not currently possible to “precisely predict or control the ecological impacts of the release of these nano-products into the environment.”

On the other hand, some possible future applications of nanotechnology have the potential to benefit the environment. Nanofiltration, based on the use of membranes with extremely small pores smaller than 10 nm (perhaps composed of nanotubes) are suitable for a mechanical filtration for the removal of ions or the separation of different fluids. Furthermore, magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.

Furthemore, nanotechnology could potentially have a great impact on clean energy production. Research is underway to use nanomaterials for purposes including more efficient solar cells, practical fuel cells, and environmentally friendly batteries.

A need for regulation?

Significant debate exists relating to the question of whether nanotechnology or nanotechnology-based products merit special government regulation. This debate is related to the circumstances in which it is necessary and appropriate to assess new substances prior to their release into the market, community and environment.

Regulatory bodies such as the United States Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labelling. The Material Safety Data Sheet that must be issued for some materials often does not differentiate between bulk and nanoscale size of the material in question and even when it does these MSDS are advisory only.

Limited nanotechnology labeling and regulation may exacerbate potential human and environmental health and safety issues associated with nanotechnology.[13] It has been argued that the development of comprehensive regulation of nanotechnology will be vital to ensure that the potential risks associated with the research and commercial application of nanotechnology do not overshadow its potential benefits.[14] Regulation may also be required to meet community expectations about responsible development of nanotechnology, as well as ensuring that public interests are included in shaping the development of nanotechnology.[15]

California

In October 2008, the Department of Toxic Substances Control (DTSC), within the California Environmental Protection Agency, announced its intent to request information regarding analytical test methods, fate and transport in the environment, and other relevant information from manufacturers of carbon nanotubes.[16] DTSC is exercising its authority under the California Health and Safety Code, Chapter 699, sections 57018-57020.[17] These sections were added as a result of the adoption of Assembly Bill AB 289 (2006). They are intended to make information on the fate and transport, detection and analysis, and other information on chemicals more available. The law places the responsibility to provide this information to the Department on those who manufacture or import the chemicals.

On January 22, 2009, a formal information request letter was sent to manufacturers who produce or import carbon nanotubes in California, or who may export carbon nanotubes into the State. This letter constitutes the first formal implementation of the authorities placed into statute by AB 289 and is directed to manufacturers of carbon nanotubes, both industry and academia within the State, and to manufacturers outside California who export carbon nanotubes to California. This request for information must be met by the manufacturers within one year. DTSC is waiting for the upcoming January 22, 2010 deadline for responses to the data call-in.

The California Nano Industry Network and DTSC hosted a full-day symposium on November 16, 2009 in Sacramento, CA. This symposium provided an opportunity to hear from nanotechnology industry experts and discuss future regulatory considerations in California.[18]

DTSC is expanding the Specific Chemical Information Call-in to members of the nanometal oxides. Interested individuals are encouraged to visit their website for the latest up-to-date information at http://www.dtsc.ca.gov/TechnologyDevelopment/Nanotechnology/index.cfm.

Societal implications

Beyond the toxicity risks to human health and the environment which are associated with first-generation nanomaterials, nanotechnology has broader societal implications and poses broader social challenges. Social scientists have suggested that nanotechnology's social issues should be understood and assessed not simply as "downstream" risks or impacts. Rather, the challenges should be factored into "upstream" research and decision making in order to ensure technology development that meets social objectives[19]

Many social scientists and organizations in civil society suggest that technology assessment and governance should also involve public participation[20][21][22][23]

Societal risks from the use of nanotechnology have also been raised. On the instrumental level, these include the possibility of military applications of nanotechnology (for instance, as in implants and other means for soldier enhancement like those being developed at the Institute for Soldier Nanotechnologies at MIT [2]) as well as enhanced surveillance capabilities through nano-sensors.[24]

The last few years has seen a gold rush to claim patents at the nanoscale. Over 800 nano-related patents were granted in 2003, and the numbers are increasing year to year. Corporations are already taking out broad-ranging patents on nanoscale discoveries and inventions. For example, two corporations, NEC and IBM, hold the basic patents on carbon nanotubes, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Carbon nanotubes are poised to become a major traded commodity with the potential to replace major conventional raw materials. However, as their use expands, anyone seeking to (legally) manufacture or sell carbon nanotubes, no matter what the application, must first buy a license from NEC or IBM. [3] [4]

Potential benefits and risks for developing countries

Nanotechnologies may provide new solutions for the millions of people in developing countries who lack access to basic services, such as safe water, reliable energy, health care, and education. The United Nations has set Millennium Development Goals for meeting these needs. The 2004 UN Task Force on Science, Technology and Innovation noted that some of the advantages of nanotechnology include production using little labor, land, or maintenance, high productivity, low cost, and modest requirements for materials and energy.

Potential opportunities of nanotechnologies to help address critical international development priorities include improved water purification systems, energy systems, medicine and pharmaceuticals, food production and nutrition, and information and communications technologies. Nanotechnologies are already incorporated in products that are on the market. Other nanotechnologies are still in the research phase, while others are concepts that are years or decades away from development.

Protection of the environment, human health and worker safety in developing countries often suffers from a combination of factors that can include but are not limited to lack of robust environmental, human health, and worker safety regulations; poorly or unenforced regulation which is linked to a lack of physical (e.g., equipment) and human capacity (i.e., properly trained regulatory staff). Often, these nations require assistance, particularly financial assistance, to develop the scientific and institutional capacity to adequately assess and manage risks, including the necessary infrastructure such as laboratories and technology for detection.

However, concerns are frequently raised that the claimed benefits of nanotechnology will not be evenly distributed, and that any benefits (including technical and/or economic) associated with nanotechnology will only reach affluent nations.[25] The majority of nanotechnology research and development - and patents for nanomaterials and products - is concentrated in developed countries (including the United States, Japan, Germany, Canada and France). In addition, most patents related to nanotechnology are concentrated amongst few multinational corporations, including IBM, Micron Technologies, Advanced Micro Devices and Intel.[26] This has led to fears that it will be unlikely that developing countries will have access to the infrastructure, funding and human resources required to support nanotechnology research and development, and that this is likely to exacerbate such inequalities.

Producers in developing countries could also be disadvantaged by the replacement of natural products (including rubber, cotton, coffee and tea) by developments in nanotechnology. These natural products are important export crops for developing countries, and many farmers' livelihoods depend on them. It has been argued that their substitution with industrial nano-products could negatively impact the economies of developing countries, that have traditionally relied on these export crops.[25]

Implications of molecular nanotechnology

Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Regarding the risks from molecular manufacturing, an often cited worst-case scenario is "grey goo", a hypothetical substance into which the surface of the earth might be transformed by self-replicating nanobots running amok. This concept has been analyzed by Freitas in "Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations" [5] With the advent of nan-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating organisms engineered through nanotechnology.

According to the Center for Responsible Nanotechnology:

Molecular manufacturing allows the cheap creation of incredibly powerful devices and products. How many of these products will we want? What environmental damage will they do? The range of possible damage is vast, from personal low-flying supersonic aircraft injuring large numbers of animals to collection of solar energy on a sufficiently large scale to modify the planet's albedo and directly affect the environment. Stronger materials will allow the creation of much larger machines, capable of excavating or otherwise destroying large areas of the planet at a greatly accelerated pace.

It is too early to tell whether there will be economic incentive to do this. However, given the large number of activities and purposes that would damage the environment if taken to extremes, and the ease of taking them to extremes with molecular manufacturing, it seems likely that this problem is worth worrying about. Some forms of damage can result from an aggregate of individual actions, each almost harmless by itself. Such damage is quite hard to prevent by persuasion, and laws frequently don't work either; centralized restriction on the technology itself may be a necessary part of the solution.

Finally, the extreme compactness of nanomanufactured machinery will tempt the use of very small products, which can easily turn into nano-litter that will be hard to clean up and may cause health problems.[27] The site list numerous other risks and benefits.

Studies on the implications of nanotechnology

  • The Royal Society's nanotech report [6] was inspired by Prince Charles' concerns about nanotechnology, including molecular manufacturing. However, the report spent almost no time on molecular manufacturing. (See Center for Responsible Nanotechnology criticism of omission of molecular manufacturing.) In fact, the word "Drexler" appears only once in the body of the report (in passing), and "molecular manufacturing" or "molecular nanotechnology" not at all. The report covers various risks of nanoscale technologies, such as nanoparticle toxicology. It also provides a useful overview of several nanoscale fields. (Someone more interested in nanoscale technologies should expand this description.) The report contains an annex (appendix) on grey goo, which cites a weaker variation of Richard Smalley's contested argument against molecular manufacturing. It concludes that there is no evidence that autonomous, self replicating nanomachines will be developed in the foreseeable future, and suggests that regulators should be more concerned with issues of nanoparticle toxicology.
  • In 2008, the city of Cambridge, MA in the United States considered whether to institute nanotechnology regulation similar to that in Berkeley, CA, the latter being the only city in the United States to currently regulate nanotechnology. The Cambridge Nanomaterials Advisory Committee's final report of July 2008 recommended against such regulations, recommending instead other steps to facilitate information-gathering about potential effects of nanomaterials.
  • In July 2003 the United States Environmental Protection Agency [7] issued the first research solicitation in the area of nanotechnology implications, "Exploratory Research to Anticipate Future Environmental Issues - Part 2: Impacts of Manufactured Nanomaterials on Human Health and the Environment." [8] In September 2004 US EPA partnered with the National Science Foundation and the Centers for Disease Control to issue a second research solicitation, "Nanotechnology Research Grants Investigating Environmental and Human Health Effects of Manufactured Nanomaterials: A Joint Research Solicitation - EPA, NSF, NIOSH."
  • In October 2005, the National Science Foundation announced that it would fund two national centers to research the potential societal implications of nanotechnology. Located at the University of California, Santa Barbara [10] and Arizona State University [11], researchers at these two centers are exploring a wide range of issues including nanotechnology's historical context, technology assessment, innovation and globalization issues, and societal perceptions of risk.
  • Determining a set of pathways for the development of molecular nanotechnology is now an objective of a broadly based technology roadmap project [12] led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute. That roadmap should be completed by early 2007.

See also

References

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

Further reading

  • Fritz Allhoff and Patrick Lin (eds.), Nanotechnology & Society: Current and Emerging Ethical Issues (Dordrecht: Springer, 2008).[13]
  • Fritz Allhoff, Patrick Lin, James Moor, and John Weckert (eds.), Nanoethics: The Ethical and Societal Implications of Nanotechnology (Hoboken: John Wiley & Sons, 2007).[14] [15]
  • Approaches to Safe Nanotechnology: An Information Exchange with NIOSH, United States National Institute for Occupational Safety and Health, June 2007, DHHS (NIOSH) publication no. 2007-123
  • Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found. - provides a global overview of the state of nanotechology and society in Europe, the USA, Japan and Canada, and examines the ethics, the environmental and public health risks, and the governance and regulation of this technology.
  • Dónal P O'Mathúna, Nanoethics: Big Ethical Issues with Small Technology (London & New York: Continuum, 2009).[16]

External links

it:Implicazioni in nanotecnologia fr:Débat sur les nanotechnologies

pt:Nanopoluição
  1. Paull, John (2010) , Nanotechnology: No Free Lunch, Platter, 1(1) 8-17
  2. http://www.nanowerk.com/spotlight/spotid=1360.php Nanotechnology food coming to a fridge near you
  3. http://www.ostp.gov/NSTC/html/iwgn/iwgn.fy01budsuppl/nni.pdf
  4. CORDIS: Nanotechnology: Action Plan
  5. Dr. Jon Schiller (2010)
  6. "Approaches to Safe Nanotechnology: An Information Exchange with NIOSH". United States National Institute for Occupational Safety and Health. Retrieved 2008-04-13. 
  7. Felcher, EM. (2008). The Consumer Product Safety Commission and Nanotechnology.
  8. Nanomedicine, Volume I: Basic Capabilities, by Robert A. Freitas Jr. 1999, ISBN 1-57059-645-X
  9. Wagner V, Dullaart A, Bock AK, Zweck A. (2006). "The emerging nanomedicine landscape". Nat Biotechnol. 24 (10): 1211–1217. doi:10.1038/nbt1006-1211. PMID 17033654.  External link in |title= (help)
  10. Freitas RA Jr. (2005). "What is Nanomedicine?". Nanomedicine: Nanotech. Biol. Med. 1 (1): 2–9. doi:10.1016/j.nano.2004.11.003. PMID 17292052.  External link in |title= (help)
  11. Nanotechnology in Medicine and the Biosciences, by Coombs RRH, Robinson DW. 1996, ISBN 2-88449-080-9
  12. Gyorgy Scrinis (2007). "Nanotechnology and the Environment: The Nano-Atomic reconstruction of Nature". Chain Reaction. 97: 23–26. 
  13. Bowman D, and Hodge G (2007). "A Small Matter of Regulation: An International Review of Nanotechnology Regulation". Columbia Science and Technology Law Review. 8: 1–32. 
  14. Bowman D, and Fitzharris, M (2007). "Too Small for Concern? Public Health and Nanotechnology". Australian and New Zealand Journal of Public Health. 31 (4): 382–384. doi:10.1111/j.1753-6405.2007.00092.x. PMID 17725022. 
  15. Bowman D, and Hodge G (2006). "Nanotechnology: Mapping the Wild Regulatory Frontier". Futures. 38: 1060–1073. doi:10.1016/j.futures.2006.02.017. 
  16. "Nanotechnology web page". Department of Toxic Substances Control. 2008. 
  17. "Chemical Information Call-In web page". Department of Toxic Substances Control. 2008. 
  18. "Archived DTSC Nanotechnology Symposia". Department of Toxic Substances Control. 
  19. Kearnes, Matthew; Grove-White, Robin; Macnaghten, Phil; Wilsdon, James; Wynne, Brian (2006). "From Bio to Nano: Learning Lessons from the UK Agricultural Biotechnology Controversy". Science as Culture. Science as Culture. Routledge (published December 2006). 15 (4): 291–307. doi:10.1080/09505430601022619. Retrieved 2007-10-19. 
  20. http://csec.lancs.ac.uk/docs/nano%20project%20sci%20com%20proofs%20nov05.pdf
  21. Nanotechnology Law & Business
  22. http://www.wmin.ac.uk/sshl/pdf/CSDBUlletinMohr.pdf
  23. Demos | Publications | Governing at the Nanoscale
  24. Monahan, Torin and Tyler Wall. 2007. Somatic Surveillance: Corporeal Control through Information Networks. Surveillance & Society 4 (3): 154-173.[17]
  25. 25.0 25.1 Invernizzi N, Foladori G and Maclurcan D (2008). "Nanotechnology's Controversial Role for the South". Science Technology and Society. 13 (1): 123–148. doi:10.1177/097172180701300105. 
  26. "Nanotech's "Second Nature" Patents: Implications for the Global South, Communiques No. 87 and 88, March/April and May June" (PDF). ETC Group. 2005. 
  27. Nanotechnology: Dangers of Molecular Manufacturing