Automatic lubrication system

From Self-sufficiency
Revision as of 10:55, 18 September 2010 by Chowbok (Talk) (clean up, removed: ® (2) using AWB)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An Automatic Lubrication System (ALS), often referred to as a Centralized Lubrication System, generally comprises a controller or timer, a pump and reservoir, metering valves and fittings and supply and feed lines. It typically delivers a controlled amount of lubricant (either grease or oil) to multiple, specific locations on a machine while the machine is operating, at specific times from a central location.

Reason for an Automatic Lubrication System

Whether the equipment is stationary, such as in a manufacturing facility or mobile such as trucks, mining or construction equipment, applying lubricant is often most effective when it is dispensed in small, measured amounts over short, frequent time intervals. However, time and human resource constraints or sometimes the physical location or type of machine often makes this approach to lubrication impossible. As a result, production cycles, machine availability, and manpower availability dictate the intervals at which machinery is lubricated which is not optimal for the point requiring lubrication. Auto lube systems are installed on machinery to address this problem.

Benefits of an Automatic Lubrication System

Auto lube systems have many advantages over traditional methods of manual lubrication:

  1. All critical components are lubricated, regardless of location or ease of access
  2. Lubrication occurs while the machinery is in operation causing the lubricant to be equally distributed within the bearing and increasing the machine’s availability.
  3. Proper lubrication of critical components ensures safe operation of the machinery.
  4. Less wear on the components means extended component life, fewer breakdowns, reduced downtime, reduced replacement costs and reduced maintenance costs
  5. Measured lubrication amounts means no wasted lubricant
  6. Safety - no climbing around machinery or inaccessible areas (gases, exhaust, confined spaces, etc.)
  7. Lower energy consumption due to less friction
  8. Increased overall productivity resulting from increase in machine availability and reduction in downtime due to breakdowns or general maintenance

Five Main Components of an Automatic Lubrication System

Regardless of the manufacturer or type of system, all automatic lubrication systems share 5 main components:[1]

  1. Controller/Timer – what activates the system
  2. Pump & Reservoir – stores and provides the lubricant to the system
  3. Supply Line – line that connects the pump to the metering valves or injectors. The lubricant is pumped through this.
  4. Metering Valves/Injectors– component that measures/dispenses the lubricant to the application points.
  5. Feed lines - line that connects the metering valves or injectors to the application points. The lubricant is pumped through this.

Different Types of Automatic Lubrication Systems

There are several different types of automatic lubrication systems including:

  • Single Line Parallel systems
  • Dual Line Parallel systems
  • Single Point Automatics
  • Single Line Progressive systems (or Series Progressive)
  • Single Line Resistance
  • Oil Mist and Air-Oil systems
  • Oil re-circulating
  • Chain lube systems

The 3 most commonly used Automatic Lubrication System types are:

  • Single Line Parallel,
  • Dual Line Parallel and
  • Single Line Progressive.[1]

Single Line Progressive

File:Single Line Progressive Automatic Lubrication System.png
Single Line Progressive Automatic Lubrication System

A single line progressive system uses lubricant flow to cycle individual metering valves and valve assemblies. The valves consist of dispensing pistons moving back and forth in a specific bore. Each piston depends on flow from the previous piston to shift and displace lubricant. If one piston doesn’t shift, none of the following pistons will shift. Valve output is not adjustable.

Operation begins when the controller/timer sends a signal to the pump to start the lube event. The pump then feeds lubricant into the supply line which connects to the primary metering valve, for either a preprogrammed amount of time or number of times as monitored through a designated piston cycle switch. Lubricant is fed to the multiple lubrication points one after another via secondary progressive metering valves sized for each series of lubrication points, and then directly to each point via the feed lines.[2]

Single Line Parallel

File:Single Line Parallel Automatic Lubrication System.png
Single Line Parallel Automatic Lubrication System

The first single-line parallel system for industry was introduced in 1937 by Lincoln Engineering (now known as Lincoln Industrial) in the U.S.A.

A single line parallel system can service a single machine, different zones on a single machine or even several separate machines and is ideal when the volume of lubricant varies for each point. In this type of system, a central pump station automatically delivers lubricant through a single supply line to multiple branches of injectors. Each injector serves a single lubrication point, operates independently and may be individually adjusted to deliver the desired amount of lubricant.[3]

Operation begins when the controller/timer sends a signal to the pump starting the lube cycle. The pump begins pumping lubricant to build up pressure in the supply line connecting the pump to the injectors. Once the required pressure is reached, the lube injectors dispense a predetermined amount of lubricant to the lubrication points via feed lines.[4]

Once the entire system reaches the required pressure, a pressure switch sends a signal to the controller indicating that grease has cycled through to all the distribution points. The pump shuts off. Pressure is vented out of the system and grease in the line is redirected back to the pump reservoir, until the normal system pressure level is restored.[4]

Dual Line Parallel

File:Dual Line Parallel Automatic Lubrication System.jpg
Dual Line Parallel Automatic Lubrication System

A dual line parallel system is similar to the single line parallel system in that it uses hydraulic pressure to cycle adjustable valves to dispense measured shots of lubricant. It has 2 main supply lines which are alternatively used as pressure / vent lines. The advantage of a two-line system is that it can handle hundreds of lubrication points from a single pump station over several thousand feet using significantly smaller tubing or pipe.

Operation begins when the controller/timer sends a signal to the pump to start the lubrication cycle. The pump begins pumping lubricant to build up pressure in the first (the pressure) supply line while simultaneously venting the second (vent) return line. Once the required pressure is reached, a predetermined amount of lubricant is dispensed by the metering devices to half of the lubrication points via feed lines.

Once the pressure switch monitoring main supply line pressure indicates a preset pressure in the line has been reached, the system is hydraulically closed. The controller shuts off the pump and signals a changeover valve to redirect lubricant to the second main supply line.[5]

The next time the controller activates the system, the second main line now becomes the pressure line while the first line becomes the vent line. The second line is pressurized and the entire process is repeated lubricating the remaining lube points.[5]

See also

References

  1. 1.0 1.1 Mohawk College of Applied Arts and Technology: Reasons for Lube Systems; MATLLUB04. January 2007, FLO Components Ltd.
  2. Lincoln Industrial Corporation: Quicklub Centralized & Automated Lubrication Systems. April 2007.
  3. Lincoln Industrial Corporation: Centro-Matic Automated Lubrication Systems. December 2007.
  4. 4.0 4.1 Paul Conley, Lincoln Industrial Corporation and Raj Shah, Koehler Instrument Company: Ventmeter Aids Selection of Grease for Centralized Lubrication Systems. In: Machinery Lubrication Magazine. January 2004
  5. 5.0 5.1 Steve Cartwright; LubriSource Inc. Product Guide - Centralized Lubrication Systems. In: Machinery Lubrication Magazine. July 2002

External links

fr:Lubrification ja:潤滑