Glass microsphere

From Self-sufficiency
Revision as of 09:07, 20 September 2010 by Jontas (Talk | contribs) (1 revision)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
File:Glass microsphere in concrete.jpg
SEM micrograph of a glass microsphere in concrete

Glass microspheres are microscopic spheres of glass manufactured for a wide variety of uses in research, medicine, consumer goods and various industries. Glass microspheres are usually between 1 to 1000 micrometers in diameter, although the sizes can range from 100 nanometers to 5 millimeters in diameter.[1] Hollow glass microspheres, sometimes termed microballoons, or glass bubbles have diameters ranging from 10 to 300 micrometers.

Hollow spheres are used as a lightweight filler in composite materials such as syntactic foam and lightweight concrete.[2] Microballoons give syntactic foam its light weight, low thermal conductivity, and a resistance to compressive stress that far exceeds that of other foams.[3] These properties are exploited in the hulls of submersibles and deep-sea oil drilling equipment, where other types of foam would implode. Hollow spheres of other materials create syntactic foams with different properties, for example ceramic balloons can make a light syntactic aluminium foam.[4]

Hollow spheres also have uses ranging from storage and slow release of pharmaceuticals and radioactive tracers to research in controlled storage and release of hydrogen.[5] Microspheres are also used in composites to fill polymer resins for specific characteristics such as weight, sandability and sealing surfaces. When making surfboards for example, shapers seal the EPS foam blanks with epoxy and microballoons to create an impermeable and easily sanded surface upon which fiberglass laminates are applied.

Glass microspheres can be made by heating tiny droplets of dissolved water glass in a process known as ultrasonic spray pyrolysis, and properties can be improved somewhat by using an acid treatment to remove some of the sodium.[6] Sodium depletion has also allowed hollow glass microspheres to be used in chemically sensitive resin systems, such as long pot life epoxies or non-blown polyurethane composites

Additional functionalities, such as silane coatings, are commonly added to the surface of hollow glass microspheres to increase the matrix/microspheres interfacial strength (the common failure point when stressed in a tensile manner).[7]

Glass microspheres are also produced as waste product in coal-fired power stations. Small amounts of silica in the coal are melted and as they rise up the chimneystack, which expands and forms small hollow spheres. These spheres are collected together with the ash, which is pumped in a water mixture to the resident ash dam. Some of the particles do not become hollow and sink in the ash dams, while the hollow ones float on the surface of the dams. They become a nuisance, especially when they dry, as they become airborne and blow over into surrounding areas.

Dispensing of microspheres

Dispensing of microspheres can be a difficult task. When utilizing microspheres as a filler for standard mixing and dispensing machines, a breakage rate of up to 80% can occur, depending upon factors such as pump choice, material viscosity, material agitation, and temperature. Customized dispensers for microsphere-filled materials may reduce the microsphere breakage rate to a minimal amount. A Progressive cavity pump is the pump of choice for dispensing materials with microspheres, which can reduce microsphere breakage as much as 80%.

See also

References

  1. pharmaceutical-technology.com
  2. "Whatever Floats Your Boat, Clemson Student Chapter of the American Society of Civil Engineers"
  3. Common Microballoons have a density of 0.15 to 0.20 g/cc, with an isostatic crush strength of 300 to 500 psi. Denser, high strength forms offer 0.38 g/cc with 5500 psi strength, and 0.6 g/cc (still offering considerable flotation) with 18,000 psi crush pressure. (see 3m.com data)crgrp.net
  4. Foams on the Cutting Edge
  5. "J.E. Shelby et al. (2007). A radically new method for hydrogen storage in hollow glass microspheres. DOE Technical Report FG26-04NT42170.
  6. mrs.org
  7. [1]. Trelleborg.com

External links