Poly(N-isopropylacrylamide)

From Self-sufficiency
Revision as of 09:10, 20 September 2010 by Jontas (Talk | contribs) (1 revision)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
File:Poly N isopropylacrylamide.png
Chemical structure of poly(N-isopropylacrylamide)

Poly(N-isopropylacrylamide) (variously abbreviated PNIPA, PNIPAAm, PNIPAA or PNIPAm) is a temperature-responsive polymer that was first synthesized in the 1950s.[1]

It forms a three-dimensional hydrogel when crosslinked with N,N’-methylene-bis-acrylamide (MBAm) or N,N’-cystamine-bis-acrylamide (CBAm). When heated in water above 33°C, it undergoes a reversible lower critical solution temperature phase transition from a swollen hydrated state to a shrunken dehydrated state, losing about 90% of its mass. Since PNIPAm expels its liquid contents at a temperature near that of the human body, PNIPAm has been investigated by many researchers for possible applications in controlled drug delivery.[2][3][4]


References

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />


fr:Poly(N-isopropylacrylamide) it:PNIPPA
  1. Schild, H. G. “Poly(N-isopropylacrylamide): experiment, theory and application” Progress in Polymer Science, 1992, 17 (2), 163–249.
  2. Chung, J. E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. “Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)” Journal of Controlled Release, 1999, 62, 115–127. Abstract
  3. Hu Yan and Kaoru Tsujii. “Potential application of poly(N-isopropylacrylamide) gel containing polymeric micelles to drug delivery systems” Colloids and Surfaces B: Biointerfaces. 2005, 46, 142–146. Abstract
  4. Antunes F. , Gentile L. , Tavano L. , Oliviero Rossi C. , " Rheological characterization of the thermal gelation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide)co-Acrylic Acid". Applied Rheology, 2009, Vol. 19, n. 4, pp. 42064-42069. Abstract