Electrokinetic phenomena

From Self-sufficiency
Jump to: navigation, search

Electrokinetic phenomena are a family of several different effects that occur in heterogeneous fluids or in porous bodies filled with fluid. The term heterogeneous here means a fluid containing particles. Particles can be solid, liquid or gas bubbles with sizes on the scale of a micrometer or nanometer.

There is a common source of all these effects — the so-called interfacial 'double layer' of charges. Influence of an external force on the diffuse layer generates tangential motion of a fluid with respect to an adjacent charged surface. This force might be electric, pressure gradient, concentration gradient, gravity. In addition, the moving phase might be either continuous fluid or dispersed phase.

Various combinations of the driving force and moving phase determine various electrokinetic effects. Following "Fundamentals of Interface and Colloid Science" by Lyklema (1995), the complete family of electrokinetic phenomena includes:

There are detailed descriptions of electrokinetic phenomena in many books on colloid and interface science [1], [2], [3],[4], [5], [6],[7].

See also

References

  1. Lyklema, J. (1995) Fundamentals of Interface and Colloid Science, Vol. 2, p. 3.208.
  2. Hunter, R.J. (1989) Foundations of Colloid Science, Oxford University Press.
  3. Dukhin, S.S. and Derjaguin, B.V. (1974) Electrokinetic Phenomena, J. Willey and Sons.
  4. Russel, W.B., Saville, D.A., and Schowalter, W.R. (1989) Colloidal Dispersions, Cambridge University Press.
  5. Kruyt, H.R. (1952) Colloid Science, Elsevier. Volume 1, Irreversible systems.
  6. Dukhin, A.S. and Goetz, P.J. (2002) Ultrasound for characterizing colloids. Elsevier.
  7. Kirby, B.J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. 
pl:Zjawisko elektrokinetyczne