GPS for the visually impaired

From Self-sufficiency
Jump to: navigation, search

There have been many attempts at integrating Global Positioning System into a navigation-assistance system for the blind. GPS was introduced in the late 1980s and since then there have been several research projects. Satellite navigation complements existing aids like the White cane or guide dogs but does not replace them.

Loadstone GPS

The Loadstone project is developing an open source software for satellite navigation for blind and visually impaired users. The software is free and runs currently on many different Nokia devices with the S60 platform under all versions of the Symbian operating system. A GPS receiver must be connected to the cell phone by Bluetooth. A lot of blind people around the world are using Nokia cell phones because there are two screen reader products for the S60 Symbian platform; Talks from Nuance Communications and Mobile Speak from the Spanish company Code Factory, which make these devices accessible by output of synthetic speech and also allow the use of third party software like Loadstone GPS.

The Loadstone developers themselves are blind and are from Vancouver, Glasgow and Amsterdam. Many users from around the world participate with improvement proposals Because they know exactly what functionality helps best to increase their pedestrian mobility. In 2004 the project was started by the private individuals Monty Lilburn and Shawn Kirkpatrick and after first development successes they made it public in May 2006 and other volunteers found their way to this project of global selfhelp. The program is under the GNU General Public License (GPL), and was financed only by the private developers and by donations of users. It makes blind people more independent of the trading policy and prices of the few global vendors of accessible satellite navigation solutions.

Since for large rural regions of our world or developing or newly industrializing countries nearly no exactly map data is available in common map databases, the Loadstone software provides users an option to create and store own waypoints for navigation and share it with others. The Loadstone community is working on import of coordinates from free sources like the OpenStreetMap project as well. In addition they are searching for a sponsor of licenses for commercial map data like the company Tele Atlas offers. . The other major supplier is NAVTEQ which will be taken over by Nokia soon.

Loadstone is the name of a natural magnetic iron which was used for a long time in history for manufacturing of compasses.
Sighted owners of S60 devices can use Loadstone for the leisure-time activity geocaching.

Wayfinder Access

Wayfinder Access is an innovative GPS solution from the Swedish company Wayfinder Systems AB. This application for Symbian phones is designed especially to work with screen readers like Mobile Speak from Code Factory or TALKS from Nuance Communications and text-to-speech technology, and takes into consideration the special needs of the blind and visually impaired. With Symbian screen reader software, however, you get more than just the reading of the application’s screens, but also a Braille support.

Highlights of Wayfinder Access include, but are not limited to:

  • Information provided for both pedestrian and vehicular navigation.
  • A database of 20 million points of interest.
  • Online maps that are regularly updated.
  • The "Where am I?" feature that readily gives information about your current location.
  • The "What is in my surrounding?" feature that initiates a scan of the immediate area to inform you of street names , intersections and nearby points of interest such as restaurants, banks, and much more.
  • The new “Vicinity View” feature that allows you to hear audible references for an area with a scope that you can later adjust based on the radius of the scanned vicinity.
  • Feedback on points of Interest (POI), crossings or favorites that can be restricted, prioritized, and presented according to their distance from your location.

Trekker

The Victor Trekker, designed and manufactured by HumanWare (previously known as VisuAide), was launched on March 2003. It is a personal digital assistant (PDA) application operating on a Pocket PC, adapted for the blind and visually impaired with talking menus, talking maps and GPS information. Fully portable (weight 600g), it offered features enabling a blind person to determine position, create routes and receive information on navigating to a destination. It also provided search functions for an exhaustive database of point of interests, such as restaurants, hotels, etc.

It is fully upgradeable, so it can expand to accommodate new hardware platforms and more detailed geographic information.

Trekker and Maestro, which is the first off-the-shelf accessible PDA based on Windows Mobile Pocket PC, are integrated and available since May 2005.

Trekker Breeze

The Trekker Breeze is a standalone hardware. Routes need to be recorded before they can be used. POIs are supported.

BrailleNote GPS

The BrailleNote GPS device is developed by Sendero Group, LLC, and Pulse Data International, now called HumanWare, in 2002. It is like a combination of a personal digital assistant, Map-quest software and a mechanical voice.

With a receiver about the size of a small cell phone, the BrailleNote GPS utilizes the GPS network to pinpoint a traveler’s position on earth and nearby points of interest. The personal computers receive radio signals from satellites to chart the location of users and direct them to their destination with recorded voice commands. The system uses satellites to triangulate the carrier’s position, much like a ship finding its location at sea.

Visually impaired people can encode points of interest such as local restaurants or any other location, into the computer’s database. Afterward, they can punch keys on the unit’s keyboard to direct themselves to a specific point of interest.

Mobile Geo

Mobile Geo is Code Factory’s GPS navigation software for Windows Mobile-based Smartphones, Pocket PC phones and personal digital assistants (PDAs). Powered by GPS and mapping technology from the Sendero Group , a leading provider of GPS products for the blind, Mobile Geo is the first solution specifically designed to serve as a navigation aid for people with a visual impairment which works with a wide range of mainstream mobile devices. Though it is a separately licensed product, Mobile Geo is seamlessly integrated with Code Factory’s popular screen readers – Mobile Speak for Pocket PCs and Mobile Speak for Windows Mobile Smartphones .

With Mobile Geo, you can pinpoint your location, learn about the points of interest (POIs) in your immediate vicinity, plan a route between specified points of origin and destination, and get instructions on maneuvers to make as well as information about waypoints along a route that you are following. However, Mobile Geo by no means replaces a cane or dog guide, and use of this product when traveling independently is recommended only when the blind user has received training in the skills of orientation and mobility.

The following is a list of what makes Mobile Geo a unique GPS product for the blind, eclipsing similar solutions currently available. Please note that most of these features will be present in the first version, while a few will be released in future updates of the product:

  1. Mobile Geo supports versions 5.0, 6.0, and 6.1 of the Windows Mobile operating system. This includes support for devices running Windows Mobile Professional (Pocket PC phone), Standard (Smartphone), and Classic (stand-alone PDA), editions of the operating system. This means that you can pick up a supported device from a local store or through your preferred mobile phone network operator, and upgrade to newer device models in the future whenever you wish.
  2. It is compatible with more than 300 personal digital assistants as well as mobile phones operating on GSM, CDMA and WCDMA networks.
  3. It functions as an add-on to Code Factory’s leading screen readers for Windows Mobile, which means that you get, besides the GPS solution, a fully accessible smartphone, PDA or phone+PDA hybrid device.
  4. It is available with map data and POI files for different countries including the USA, Canada, the UK and Ireland, Spain, France, Italy, Germany, Austria, the Netherlands, Denmark, Norway, Sweden, South Africa, Australia, and the Singapore/Malaysia/Hong Kong region.
  5. It functions with speech output from various text-to-speech engines developed by leading providers, such as Fonix, Loquendo, and Acapela. It is, therefore, able to speak more than 20 languages.
  6. It works with external Bluetooth GPS receivers as well as the built-in GPS receivers present in some mobile devices.
  7. It can be used with the speech output routed to a Bluetooth headset.
  8. Application commands can be performed using numeric or QWERTY keyboards integrated with the device, the Pocket PC touch screen, or an external keyboard.
  9. It can be used with more than 20 different Braille devices for input and output.
  10. It is activated using Code Factory’s User-Centered Licensing system , which allows you to easily transfer your product license from one mobile device to another of the same platform type and version.

Navigation systems that are not designed for blind people, but are accessible

Kapsys Kapten

The French company Kapsys offers a navigation system without a display, that works with speech input and output, called Kapten.

Historical or research projects

Trinetra

The Trinetra project aims to develop cost-effective, independence-enhancing technologies to benefit blind people. One such system addresses accessibility concerns of blind people using public transportation systems. Using GPS receivers and staggered Infrared sensors, information is relayed to a centralized fleet management server via a cellular modem. Blind people, using common text-to-speech enabled cell phones can query estimated time of arrival, locality, and current bus capacity using a web browser.

Trinetra, spearheaded by Professor Priya Narasimhan, is an ongoing project at the Electrical and Computer Engineering department of Carnegie Mellon University. Additional research topics include item-level UPC and RFID identification while grocery shopping and indoor navigation in retail settings.

MoBIC

MoBIC means Mobility of Blind and Elderly people Interacting with Computers, which was carried out from 1994 to 1996 supported by the Commission of the European Union. It was developing a route planning system which is designed to allow a blind person access to information from many sources such as bus and train timetables as well as electronic maps of the locality. The planning system helps blind people to study and plan their routes in advance, indoors.

With the addition of devices to give the precise current position and orientation of the blind pedestrian, the system could then be used outdoors. The outdoor positioning system is based on signals and satellites which give the longitude and latitude to within a metre; the computer converts this data to a position on an electronic map of locality. The output from the system is in the form of spoken messages.

Drishti

Drishti is a wireless pedestrian navigation system. It integrates several technologies including wearable computers, voice recognition and synthesis, wireless networks, Geographic information system (GIS) and GPS. It augments contextual information to the visually impaired and computed optimized routes based on user preference, temporal constraints (e.g. traffic congestion), and dynamic obstacles (e.g. ongoing ground work, road blockade for special events).

The system constantly guides the blind user to navigate based on static and dynamic data. Environmental conditions and landmark information queries from a spatial database along their route are provided on the fly through detailed explanatory voice cues. The system also provides capability for the user to add intelligence, as perceived by the blind user, to the central server hosting the spatial database.

UCSB Personal Guidance System

In 1985, Jack Loomis, a Professor of Psychology at the University of California, Santa Barbara, came up with the idea of GPS-based navigation system for the visually impaired. A short unpublished paper (Loomis, 1985) outlined the concept and detailed some ideas for implementation, including the idea of a virtual sound interface. Loomis directed the project for over 20 years, in collaboration with Reginald Golledge (1937-2009), Professor of Geography at UCSB, and Roberta Klatzky, Professor of Psychology (now at Carnegie Mellon University). Their combination of development and applied research was supported by three multi-year grants from the National Eye Institute (NEI) and another multi-year consortium grant from the National Institute on Disability and Rehabilitation Research (NIDRR), headed by Michael May of Sendero Group. In 1993, the UCSB group first publicly demonstrated the Personal Guidance System (PGS) using a bulky prototype carried in a backpack. Since then, they created several versions of the PGS, one of which was carried in a small pack worn at the waist. Their project mostly focused on the user interface and the resulting research has defined the legacy of the project. As indicated earlier in this entry, several wearable systems are now commercially available. These systems provide verbal guidance and environmental information via speech and Braille displays. But just as drivers and pilots want pictorial information from their navigation systems, survey research by the UCSB group has shown that visually impaired people often want direct perceptual information about the environment. Most of their R&D has dealt with several types of “spatial display”, with researchers Jim Marston and Nicholas Giudice contributing to the recent efforts. The first is a virtual acoustic display, which provides auditory information to the user via earphones (as proposed in the 1985 concept paper). With this display, the user hears important environmental locations, such as turn points along the route and points of interest. The labels of these locations are converted to synthetic speech and then displayed using auditory direction and distance cues, such that the spoken labels appear in the auditory space of the user. A second type of display, which the group calls a “haptic pointer interface”, was inspired by the hand-held receiver used in the Talking Signs© system of remote signage. The user holds a small wand, to which are attached an electronic compass and a small loudspeaker or vibrator. When the hand is pointing toward some location represented in the computer database, the user hears a tone or feels a vibration. Supplementary verbal information can be provided by synthetic speech. The user moves toward the desired location by aligning the body with the hand while maintaining the "on-course" auditory or vibratory signal. Other variants of the pointer interface involve putting the compass on the body or head and turning the body or head until the on-course signal is perceived. Six published route-guidance studies indicate that spatial displays provide effective route guidance, entail less cognitive load than speech interfaces, and are generally preferred by visually impaired users.

Brunel navigation system for the blind

Prof. W. Balachandran is the pioneer and the head of GPS research group at Brunel University. He and his research team are pursuing research on navigation system for blind and visually impaired people. The system is based on the integration of state of the art current technologies, including high-accuracy GPS positioning, GIS, electronic compass and wireless digital video transmission (remote vision) facility with an accuracy of 3~4m. It provides an automated guidance using the information from daily updated digital map datasets e.g. roadworks. If required the remote guidance of visually impaired pedestrians by a sighted human guide using the information from the digital map and from the remote video image provides flexibility.

The difficulties encountered includes the availability of up to date information and what information to offer including the navigation protocol. Levels of functionality have been created to tailor the information to the user’s requirements.

NOPPA

NOPPA navigation and guidance system was designed to offer public transport passenger and route information using GPS technology for the visually impaired. This was a three-year (2002~2004) project in VTT Industrial Systems in Finland. The system provides an unbroken trip chain for a pedestrian using buses, commuter trains and trams in three neighbor cities’ area. It is based on an information server concept, which has user-centered and task oriented approach for solving information needs of special needs groups.

In the system, the Information Server is an interpreter between the user and Internet information systems. It collects, filters and integrates information from different sources and delivers results to the user. The server handles speech recognition and functions requiring either heavy calculations or data transfer. The data transfer between the server and the client is minimized. The user terminal holds speech synthesis and most of route guidance.

NOPPA is currently able to offer basic route planning and navigation services in Finland. In practice, the limits are map data can have outdated information or inaccuracies, positioning can be unavailable or inaccurate, or wireless data transmission is not always available.

Navig

NAVIG is an innovative multidisciplinary project, with fundamental and applied aspects. The main objective is to increase the autonomy of blind people in their navigation capabilities. Reaching a destination while avoiding obstacles is one of the most difficult issue that blind individuals have to face.
Achieving autonomous navigation will be pursued indoor and outdoor, in known and unknown environments. The project consortium is composed by two research centers in computer sciences specialized in human-machine interaction (IRIT) for handicapped people and in auditory perception, spatial cognition, sound design and augmented reality (LIMSI). Another research center is specialized in human and computer vision (CERCO), and two industrial partners are active in artificial vision (Spikenet Technology) and in pedestrian geolocalisation (Navocap). The last member of the consortium is an educational research center for the visually impaired (CESDV – IJA, Institute of Blind Youth).

External links

research