Polyether block amide

From Self-sufficiency
Jump to: navigation, search

Polyether block amide or PEBA is a thermoplastic elastomer (TPE). It is also known under the tradename of PEBAX. It is a block copolymer obtained by polycondensation of a carboxylic acid polyamide (PA6, PA11, PA12) with an alcohol termination polyether (PTMG, PEG). The general chemical structure is:

HO - (CO - PA - CO - O - PE - O)n - H

PEBA is a high performance thermoplastic elastomer. It is used to replace common elastomers – thermoplastic polyurethanes, polyester elastomers, and silicones - for these characteristics: lower density among TPE, superior mechanical and dynamic properties (flexibility, impact resistance, energy return, fatigue resistance) and keeping these properties at low temperature (lower than -40 °C), and good resistance against a wide range of chemicals. It is sensitive to UV degradation, however.

Applications

PEBA is found in the sports equipment market: for damping system components and outsoles of high end shoes (running, track & field, football, baseball, basketball, trekking, etc.) where it is appreciated for its low density, damping properties, energy return and flexibility. PEBA is also appreciated by winter sports participants as it enables design of the lightest alpine and Nordic ski boots while providing some resistance to extreme environment (low temperatures, UV exposure, moisture). It is used in various other sports applications such as racquet grommets and golf balls.

PEBA is used in medical products such as catheters for its flexibility, its good mechanical properties at low and high temperatures, and its softness.

It is also widely used in the manufacture of electric and electronic goods such as cables and wire coatings, electronic device casings, components, etc.

PEBA can be used to make textiles as well as breathable film, fresh feeling fibres or non-woven fabrics.

Some hydrophilic grades of PEBA are also used for their antistatic and antidust properties. Since no chemical additives are required to achieve these properties, products can be recycled at end of life.

Physical Properties

Properties Unit Value
Melting Point °C 134–174
Density g/cm³ 1.00
Water absorption at equilibrium (23 °C, 50% RH)  % 0.4–0.7
Water absorption at saturation (23 °C, 24H in water)  % 0.9–1.2
Shore Hardness Shore D 25–72
Flexural modulus MPa 12–513
Tensile strength at break MPa 32-56
Elongation at break  % 300–750
Impact resistance (Charpy, notched) kJ/m² No break
Abrasion resistance (10 N/40 m) mm³ 55–130
Surface resistivity Ω 109–1013
Volume resistivity Ω·cm 109–1013

References