Ruthenium
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
silvery white metallic 250px | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name, symbol, number | ruthenium, Ru, 44 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pronunciation | /ruːˈθiːniəm/ roo-THEE-nee-əm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element category | transition metal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, period, block | 8, 5, d | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | 101.07 g·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Kr] 4d7 5s1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 15, 1 (Image) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 12.45 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 10.65 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 2607 K, 2334 °C, 4233 °F | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 4423 K, 4150 °C, 7502 °F | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 38.59 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 591.6 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific heat capacity | (25 °C) 24.06 J·mol−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vapor pressure | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 8, 7, 6, 4, 3, 2, 1,[1], -2 (mildly acidic oxide) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 2.3 (Pauling scale) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 710.2 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 1620 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd: 2747 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 134 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 146±7 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellanea | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic[2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | (0 °C) 71 nΩ·m | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | (300 K) 117 W·m−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | (25 °C) 6.4 µm·m−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 5970 m/s | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 447 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 173 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 220 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 6.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 2160 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 7440-18-8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most stable isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main article: Isotopes of ruthenium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ruthenium (pronounced /ruːˈθiːniəm/ roo-THEE-nee-əm) is the chemical element with the atomic number 44, and is represented by the symbol Ru. It is a rare transition metal of the platinum group of the periodic table; and like the other metals of the platinum group, ruthenium is inert to most other chemicals. The Russian scientist Karl Klaus discovered the element in 1844 and named it after Ruthenia, the Latin word for Rus'. Ruthenium is found associated with platinum ores. Ruthenium is a minor component in these ores and therefore is a relatively rare element. Most ruthenium is used for wear-resistant electrical contacts and the production of thick-film resistors. A minor application of ruthenium is its use in some platinum alloys.
Contents
Characteristics
Physical properties
A polyvalent hard white metal, ruthenium is a member of the platinum group and is in group 8 of the periodic table:
Z | Element | No. of electrons/shell |
---|---|---|
26 | iron | 2, 8, 14, 2 |
44 | ruthenium | 2, 8, 18, 15, 1 |
76 | osmium | 2, 8, 18, 32, 14, 2 |
108 | hassium | 2, 8, 18, 32, 32, 14, 2 |
However, it has an atypical configuration in its outermost electron shells: whereas all other group-8 elements have 2 electrons in the outermost shell, in ruthenium, one of those is transferred to a lower shell. (This effect can be observed in the neighborhood of niobium (41), ruthenium (44), rhodium (45), and palladium (46))
Ruthenium has four crystal modifications and does not tarnish at normal temperatures. Ruthenium dissolves in fused alkalis, is not attacked by acids but is attacked by halogens at high temperatures. Small amounts of ruthenium can increase the hardness of platinum and palladium. The corrosion resistance of titanium is increased markedly by the addition of a small amount of ruthenium.[3]
This metal can be plated either by electroplating or by thermal decomposition methods. A ruthenium-molybdenum alloy is known to be superconductive at temperatures below 10.6 K.[3]
Isotopes
Naturally occurring ruthenium is composed of seven stable isotopes. Additionally, 34 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru with a half-life of 373.59 days, 103Ru with a half-life of 39.26 days and 97Ru with a half-life of 2.9 days.[4][5]
Fifteen other radioisotopes have been characterized with atomic weights ranging from 89.93 u (90Ru) to 114.928 u (115Ru). Most of these have half-lives that are less than five minutes except 95Ru (half-life: 1.643 hours) and 105Ru (half-life: 4.44 hours).[4][5]
The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary mode after is rhodium.[4][5]
Occurrence
Ruthenium is exceedingly rare and is the 74th most abundant metal on Earth.[6] This element is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario, Canada, and in pyroxenite deposits in South Africa. The native ruthenium is very rare mineral (Ir replaces part of Ru in its structure).[7][8]
Production
Mining
Roughly 12 tonnes of Ru is mined each year with world reserves estimated as 5,000 tonnes.[6] The composition of the mined platinum group metal (PGM) mixtures varies in a wide range depending on the geochemical formation. For example, the PGMs mined in South Africa contain on average 11% ruthenium while the PGMs mined in the USSR contain only 2% based on research dating from 1992.[9][10]
Ruthenium, like the other platinum group metals, is obtained commercially as a by-product from nickel and copper mining and processing as well as by the processing of platinum group metal ores. During electrorefining of copper and nickel, noble metals such as silver, gold and the platinum group metals including selenium and tellurium settle to the bottom of the cell as anode mud, which forms the starting point for their extraction.[7][8] In order to separate the metals, they must first be brought into solution. Several methods are available depending on the separation process and the composition of the mixture; two representative methods are fusion with sodium peroxide followed by dissolution in aqua regia, and dissolution in a mixture of chlorine with hydrochloric acid.[11][12] Osmium, ruthenium, rhodium and iridium can be separated from platinum and gold and base metals by their insolubility in aqua regia, leaving a solid residue. Rhodium can be separated from the residue by treatment with molten sodium bisulfate. The insoluble residue, containing Ru, Os and Ir is treated with sodium oxide, in which Ir is insoluble, producing water-soluble Ru and Os salts. After oxidation to the volatile oxides, RuO4 is separated from OsO4 by precipitation of (NH4)3RuCl6 with ammonium chloride or by distillation or extraction with organic solvents of the volatile osmium tetroxide.[13] Hydrogen is used to reduce ammonium ruthenium chloride yielding a powder.[14] The first method to precipitate the ruthenium with ammonium chloride is similar to the procedure that Smithson Tennant and William Hyde Wollaston used for their separation. Several methods are suitable for industrial scale production. In either case, the product is reduced using hydrogen, yielding the metal as a powder or sponge that can be treated using powder metallurgy techniques or by argon-arc welding.[15]
From used nuclear fuels
Ruthenium is a fission product of uranium-235, therefore each kilo of fission products contains significant amounts of the lighter platinum group metals and therefore also ruthenium. Used nuclear fuel might be a possible source for ruthenium. The complicated extraction is expensive and the also present radioactive isotopes of ruthenium would make a storage for several half-lives of the decaying isotopes necessary. This makes this source of ruthenium unattractive and no large-scale extraction has been started.[16][17][18]
Chemical compounds
The oxidation states of ruthenium range from 0 to +8, and −2. The properties of ruthenium and osmium compounds are often similar. The +2, +3, and +4 states are the most common. The most prevalent precursor is ruthenium trichloride, a red solid that is poorly defined chemically but versatile synthetically.[14]
Oxides
Ru can oxidize to ruthenium tetroxide, RuO4, a strong oxidizing agent with structure analogous to osmium tetroxide. Other examples are ruthenium(IV) oxide (RuO2, oxidation state +4), dipotassium ruthenate (K2RuO4, +6), and potassium perruthenate (KRuO4, +7).[19]
Coordination complexes
Ruthenium forms a variety of coordination complexes. Examples are the many pentammine derivatives [Ru(NH3)5L]n+ which often exist in both Ru(II) and Ru(III). Derivatives of bipyridine and terpyridine are numerous, best known being the luminiscent tris(bipyridine)ruthenium(II) chloride.
Organometallic compounds
Ruthenium form a wide range compounds with carbon-ruthenium bonds. Ruthenocene is analogous to ferrocene structurally, but exhibits distinctive redox properties. A large number of complexes of carbon monoxide are known, the parent being triruthenium dodecacarbonyl. The analogue of iron pentacarbonyl, ruthenium pentacarbonyl is unstable at ambient conditions. Ruthenium trichloride carbonylates (reacts with carbon monoxide) to give mono- and diruthenium(II) carbonyls from which many derivatives have been prepared such as RuHCl(CO)(PPh3)3 and Ru(CO)2(PPh3)3 (Roper's complex). Heating solutions of ruthenium trichloride in alcohols with triphenylphosphine gives tris(triphenylphosphine)ruthenium dichloride (RuCl2(PPh3)3), which converts to the hydride complex chlorohydridotris(triphenylphosphine)ruthenium(II) (RuHCl(PPh3)3).[14]
In the area of fine chemical synthesis, Grubbs' catalyst is used for alkene metathesis.[20]
History
Though naturally occurring platinum, containing all six platinum group metals, was used for a long time by pre-Columbian Americans and known as a material to European chemists from the mid-16th century, it took until the mid-18th century for platinum to be identified as a pure element. The discovery that natural platinum contained palladium, rhodium, osmium and iridium took place in the first decade of the 19th century.[21] Platinum in alluvial sands of Russian rivers gave access to raw material for use in plates and medals and for the minting of ruble coins, starting in 1828.[22] Residues of platinum production for minting were available in the Russian Empire, and therefore most of the research on them was done in Eastern Europe.
It is possible that the Polish chemist Jędrzej Śniadecki isolated element 44 (which he called "vestium") from platinum ores in 1807. His work was never confirmed, however, and he later withdrew his claim of discovery.[6] Jöns Berzelius and Gottfried Osann nearly discovered ruthenium in 1827.[23] They examined residues that were left after dissolving crude platinum from the Ural Mountains in aqua regia. Berzelius did not find any unusual metals, but Osann thought he found three new metals, pluranium, ruthenium and polinium. This discrepancy led to a long-standing controversy between Berzelius and Osann about the composition of the residues.[24]
In 1844, the Russian scientist Karl Klaus showed that the compounds prepared by Gottfried Osann contained small amounts of ruthenium, which Klaus had discovered the same year.[21] Klaus isolated ruthenium from the platinum residues of the rouble production while he was working in Kazan University, Kazan.[24] Klaus showed that ruthenium oxide contained a new metal and obtained 6 grams of ruthenium from the part of crude platinum that is insoluble in aqua regia.[24]
The name derives from Ruthenia, the Latin word for Rus', a historical area which includes present-day western Russia, Ukraine, Belarus, and parts of Slovakia and Poland. Karl Klaus used the name proposed by Gottfried Osann in 1828. He chose the element's name in honor of his birthland, as he was born in Tartu, Estonia, which was at the time a part of the Russian Empire.[21][25]
Applications
Because of its ability to harden platinum and palladium, ruthenium is used in platinum and palladium alloys to make wear-resistant electrical contacts. In this application, only thin plated films are used to achieve the necessary wear-resistance. Because of its lower cost and similar properties compared to rhodium,[15] the use as plating material for electric contacts is one of the major applications.[7][26] The thin coatings are either put on by electroplating[27] or sputtering.[28]
Ruthenium dioxide, lead and bismuth[29] ruthenates, the latter with perovskite crystal structure,[30] are used in thick film chip resistors.[31] The first two applications account for 50% of the ruthenium consumption.[6]
There are only a few alloys used other than with elements of the platinum group metals. Ruthenium is always used in small quantities in those alloys to improve certain properties of the alloys. One example is the use of small amounts of ruthenium to increase the stability of gold in jewelry. The beneficial effect on the corrosion resistance of titanium alloys led to the development of a special alloy containing 0.1% ruthenium .[32] Ruthenium is also used in some advanced high-temperature single-crystal superalloys, with applications including the turbine blades in jet engines. Several nickel based superalloy compositions are described in the literature. Among them are EPM-102 (with 3 % Ru) and TMS-162 (with 6 % Ru), both containing 6 % rhenium,[33] as well as TMS-138[34] and TMS-174.[35][36] Fountain pen nibs are frequently tipped with alloys containing ruthenium. From 1944 onward, the famous Parker 51 fountain pen was fitted with the "RU" nib, a 14K gold nib tipped with 96.2% ruthenium and 3.8% iridium.[37]
Ruthenium is a component of mixed-metal oxide (MMO) anodes used for cathodic protection of underground and submerged structures, and for electrolytic cells for chemical processes such as generating chlorine from salt water.[38] The fluorescence of some ruthenium complexes is quenched by oxygen, which has led to their use as optode sensors for oxygen.[39] Ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]6+, is a biological stain used to stain polyanionic molecules such as pectin and nucleic acids for light microscopy and electron microscopy.[40] The beta-decaying isotope 106 of ruthenium is used in radiotherapy of eye tumors, mainly malignant melanomas of the uvea.[41] Ruthenium-centered complexes are being researched for possible anticancer properties.[42] Ruthenium, unlike traditional platinum complexes, shows greater resistance to hydrolysis and more selective action on tumors. NAMI-A and KP1019 are two drugs undergoing clinical evaluation against metastatic tumors and colon cancers.
Laboratory uses
Ruthenium is also a versatile catalyst. Hydrogen sulfide can be split by light by using an aqueous suspension of CdS particles loaded with ruthenium dioxide. This may be useful in the removal of H2S from oil refineries and from other industrial processes.[43] Organometallic ruthenium carbene and allenylidene complexes have recently been found as highly efficient catalysts for olefin metathesis with important applications in organic and pharmaceutical chemistry.[44] Some ruthenium complexes absorb light throughout the visible spectrum and are being actively researched in various, potential, solar energy technologies. Ruthenium-based compounds have been used for light absorption in dye-sensitized solar cells, a promising new low-cost solar cell system.[45] Ruthenium chemical vapor deposition (CVD) is used as a method to produce thin films of pure ruthenium on substrates. These films show promising properties for the use in microchips and for the giant magnetoresistive read element for hard disk drives.[46] Ruthenium was also suggested as a possible material for microelectronics because its use is compatible with semiconductor processing techniques.[47]
References
Cite error: Invalid <references>
tag;
parameter "group" is allowed only.
<references />
, or <references group="..." />
External links
40x40px | Wikimedia Commons has media related to Ruthenium. |
40x40px | Look up ruthenium in Wiktionary, the free dictionary. |
Periodic table | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | He | ||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||||||
| |||||||||||||||||||||||||||||||||||||||||
|
af:Rutenium ar:روثينيوم bn:রুথেনিয়াম be:Рутэній bs:Rutenijum bg:Рутений ca:Ruteni cs:Ruthenium co:Ruteniu cy:Rwtheniwm da:Ruthenium de:Ruthenium et:Ruteenium el:Ρουθήνιο es:Rutenio eo:Rutenio eu:Rutenio fa:روتنیم fr:Ruthénium fur:Ruteni ga:Ruitéiniam gv:Rutainium gl:Rutenio xal:Рүтениүм ko:루테늄 hy:Ռոթենիում hi:रुथेनियम hr:Rutenij io:Rutenio id:Rutenium is:Rúþen it:Rutenio he:רותניום jv:Rutenium kn:ರುಥೇನಿಯಮ್ sw:Rutheni ku:Rûtenyûm la:Ruthenium lv:Rutēnijs lb:Ruthenium lt:Rutenis lij:Rutennio jbo:rukyjinme hu:Ruténium ml:റുഥീനിയം mr:रुथेनियम ms:Rutenium nl:Ruthenium ja:ルテニウム no:Ruthenium nn:Ruthenium oc:Rutèni uz:Ruteniy pnb:روتھینیم pl:Ruten pt:Rutênio ro:Ruteniu qu:Ruthenyu ru:Рутений stq:Ruthenium scn:Ruteniu simple:Ruthenium sk:Ruténium sl:Rutenij sr:Рутенијум sh:Rutenijum fi:Rutenium sv:Rutenium ta:ருத்தேனியம் tt:Ruteni th:รูทีเนียม tr:Rutenyum uk:Рутеній vi:Rutheni war:Ruthenium yo:Ruthenium zh-yue:釕
zh:钌- ↑ "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
- ↑ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
- ↑ 3.0 3.1 Hamond, C.R. "The elements", in Lide, D. R., ed. (2005), CRC Handbook of Chemistry and Physics (86th ed.), Boca Raton (FL): CRC Press, ISBN 0-8493-0486-5
- ↑ 4.0 4.1 4.2 Lide, D. R., ed. (2005), CRC Handbook of Chemistry and Physics (86th ed.), Boca Raton (FL): CRC Press, ISBN 0-8493-0486-5 Section 11, Table of the Isotopes
- ↑ 5.0 5.1 5.2 Audi, G.; et al. (2003). "The Nubase evaluation of nuclear and decay properties". Nuclear Physics A. 729: 3. doi:10.1016/j.nuclphysa.2003.11.001.
- ↑ 6.0 6.1 6.2 6.3 Emsley, J. (2003). "Ruthenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 368–370. ISBN 0198503407.
- ↑ 7.0 7.1 7.2 George, Micheal W. "2006 Minerals Yearbook: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.
- ↑ 8.0 8.1 "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.
- ↑ Hartman, H. L.; Britton, S. G., ed. (1992). SME mining engineering handbook. Littleton, Colo.: Society for Mining, Metallurgy, and Exploration. p. 69. ISBN 9780873351003.
- ↑ Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found.
- ↑ Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; Lang, J.; Kreuzer, T.; Knödler, A.; Starz, K. A.; Dermann, K.; Rothaut, J.; Drieselman, R. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075.
- ↑ Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found.
- ↑ Gilchrist, Raleigh (1943). "The Platinum Metals". Chemical Reviews. 32 (3): 277–372. doi:10.1021/cr60103a002.
- ↑ 14.0 14.1 14.2 Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found.
- ↑ 15.0 15.1 Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found.
- ↑ Kolarik, Zdenek; Renard, Edouard V. (2005). "Potential Applications of Fission Platinoids in Industry" (PDF). Platinum Metals Review. 49: 79. doi:10.1595/147106705X35263.
- ↑ Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part I PART I: General Considerations and Basic Chemistry" (PDF). Platinum Metals Review. 47 (2): 74–87.
- ↑ Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part II: Separation Process" (PDF). Platinum Metals Review. 47 (2): 123–131.
- ↑ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
- ↑ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010. ISBN 189138953X
- ↑ 21.0 21.1 21.2 Weeks, Mary Elvira (1932). "The discovery of the elements. VIII. The platinum metals". Journal of Chemical Education. 9: 1017. doi:10.1021/ed009p1017.
- ↑ Raub, Christoph J. (2004). "The Minting of Platinum Roubles. Part I: History and Current Investigations". 48 (2): 66–69.
- ↑ "New Metals in the Uralian Platina". The Philosophical Magazine. 2: 391–392. 1827.
- ↑ 24.0 24.1 24.2 Pitchkov, V. N. (1996). "The Discovery of Ruthenium". Platinum Metals Review. 40 (4): 181–188.
- ↑ Partington, James Riddick (1964). History of Chemistry. 4. London: Macmillan & Co. p. 499.
- ↑ Rao, C; Trivedi, D (2005). "Chemical and electrochemical depositions of platinum group metals and their applications". Coordination Chemistry Reviews. 249: 613. doi:10.1016/j.ccr.2004.08.015.
- ↑ Weisberg, A (1999). "Ruthenium plating". Metal Finishing. 97: 297. doi:10.1016/S0026-0576(00)83089-5.
- ↑ prepared under the direction of the ASM International Handbook Committee ; Merrill L. Minges, technical chairman. (1989). Electronic materials handbook. Materials Park, OH: ASM International. p. 184. ISBN 9780871702852.
- ↑ Busana, M. G.; Prudenziati, M.; Hormadaly, J. (2006). "Microstructure development and electrical properties of RuO2-based lead-free thick film resistors". Journal of Materials Science Materials in Electronics. 17: 951. doi:10.1007/s10854-006-0036-x.
- ↑ Rane, Sunit; Prudenziati, Maria; Morten, Bruno (2007). "Environment friendly perovskite ruthenate based thick film resistors". Materials Letters. 61: 595. doi:10.1016/j.matlet.2006.05.015.
- ↑ Slade, Paul G., ed. (1999). Electrical contacts : principles and applications. New York, NY: Dekker. p. 550. ISBN 9780824719340.
- ↑ Schutz, R. W. (1996). "Ruthenium Enhanced Titanium Alloys" (PDF). Platinum Metals Review. 40 (2): 54–61.
- ↑ Bondarenko, Yu. A.; Kablov, E. N.; Surova, V. A.; Echin, A. B. (2006). "Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy". Metal Science and Heat Treatment. 48: 360. doi:10.1007/s11041-006-0099-6.
- ↑ "Fourth generation nickel base single crystal superalloy" (PDF).
- ↑ Koizumi, Yutaka; et al. "Development of a Next-Generation Ni-base Single Crystal Superalloy" (PDF). Proceedings of the International Gas Turbine Congress, Tokyo November 2–7, 2003.
- ↑ Walston, S.; Cetel, A.; MacKay, R.; O'Hara, K.; Duhl, D.; Dreshfield, R. "Joint Development of a Fourth Generation Single Crystal Superalloy" (PDF).
- ↑ Mottishaw, J. (1999). "Notes from the Nib Works—Where's the Iridium?". The PENnant. XIII (2).
- ↑ Cardarelli, François (2008). "Dimensionally Stable Anodes (DSA®) for Chlorine Evolution". Materials Handbook: A Concise Desktop Reference. London: Springer. pp. 581–582. ISBN 9781846286681.
- ↑ Varney, Mark S. (2000). "Oxygen Microoptode". Chemical sensors in oceanography. Amsterdam: Gordon & Breach. p. 150. ISBN 9789056992552.
- ↑ Hayat, M. A. (1993). "Ruthenium red". Stains and cytochemical methods. New York, NY: Plenum Press. pp. 305–310. ISBN 9780306442940.
- ↑ Wiegel, T. (1997). Radiotherapy of ocular disease, Ausgabe 13020. Basel ;Freiburg: Karger. ISBN 9783805563925.
- ↑ Lua error in package.lua at line 80: module 'Module:Citation/CS1/Suggestions' not found.
- ↑ Atak, Suna; C̦elik, Mehmet Sabri (1998). Innovations in Mineral and Coal Processing. Taylor & Francis. p. 498. ISBN 9789058090133.
- ↑ Fürstner, Alois (2000). "Olefin Metathesis and Beyond". Angewandte Chemie International Edition. 39: 3012. doi:10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G.
- ↑ Kuang, Daibin; Ito, Seigo; Wenger, Bernard; Klein, Cedric; Moser, Jacques-E; Humphry-Baker, Robin; Zakeeruddin, Shaik M.; Grätzel, Michael (2006). "High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells". Journal of the American Chemical Society. 128 (12): 4146. doi:10.1021/ja058540p. PMID 16551124.
- ↑ Kar, Samares (2007-09). Physics and Technology of High-k Gate Dielectrics 5, Ausgabe 4. The Electrochemical Society. p. 569. ISBN 20079781566775700 Check
|isbn=
value: length (help). Check date values in:|date=
(help) - ↑ Cheng, A. H.-B.; Daniels, M.; Luttmer, J. D. (1998). "Environmental issues in the electronics/semiconductor industries and: Electrochemical/photochemical methods for pollution". The Electrochemical Society: 10–14. ISBN 9781566771993.
|chapter=
ignored (help)
- Pages with broken file links
- Chemical elements
- Transition metals
- Metals
- Precious metals
- Ruthenium
- Noble metals
- Good articles
- 2Fix
- Pages with script errors
- CS1 maint: Explicit use of et al.
- CS1 maint: Multiple names: editors list
- CS1 maint: Multiple names: authors list
- CS1 errors: dates
- CS1 errors: ISBN
- CS1 errors: chapter ignored