Natural building

From Self-sufficiency
Jump to: navigation, search

A natural building involves a range of building systems and materials that place major emphasis on sustainability. Ways of achieving sustainability through natural building focus on durability and the use of minimally processed, plentiful or renewable resources, as well as those that, while recycled or salvaged, produce healthy living environments and maintain indoor air quality. Natural building tends to rely on human labor, more than technology. As Michael G. Smith observes, it depends on "local ecology, geology and climate; on the character of the particular building site, and on the needs and personalities of the builders and users."[1]

The basis of natural building is the need to lessen the environmental impact of buildings and other supporting systems, without sacrificing comfort, health or aesthetics. To be more sustainable, natural building uses primarily abundantly available, renewable, reused or recycled materials. The use of rapidly renewable materials is increasingly a focus. In addition to relying on natural building materials, the emphasis on the architectural design is heightened. The orientation of a building, the utilization of local climate and site conditions, the emphasis on natural ventilation through design, fundamentally lessen operational costs and positively impact the environmental. Building compactly and minimizing the ecological footprint is common, as are on-site handling of energy acquisition, on-site water capture, alternate sewage treatment and water reuse.

File:Timber frame detail.jpg
Porch of a modern timber framed home

Materials

The materials common to many types of natural building are clay and sand. When mixed with water and, usually, straw or another fiber, the mixture may form cob or adobe (clay blocks). Other materials commonly used in natural building are: earth (as rammed earth or earth bag), wood (cordwood or timber frame/post-and-beam), straw, rice-hulls, bamboo and rock. A wide variety of reused or recycled materials are common in natural building, including urbanite (salvaged chunks of used concrete), tires, tire bales, discarded bottles and other recycled glass.

Several other materials are increasingly avoided by many practitioners of this building approach, due to their major negative environmental or health impacts. These include unsustainably harvested wood, toxic wood-preservatives, portland cement-based mixes, paints and other coatings that off-gas volatile organic compounds (VOCs), and some plastics, particularly polyvinyl chloride (PVC or "vinyl") and those containing harmful plasticizers or hormone-mimicking formulations.

Techniques

Many traditional methods, techniques, and materials, are now experiencing a resurgence of popularity, however the relative popularity of these techniques differs around the World.

Adobe

One of the oldest building methods, adobe is simply clay and sand mixed with water. Sometimes chopped straw or other fibers are added for strength. The mixture is then allowed to dry in the desired shape. Usually adobe is shaped into bricks that can be stacked to form walls.

Various claims are made about the optimal proportions of clay and sand (or larger aggregate). Some say that the best adobe soil contains 15% - 30% clay to bind the material together. Others say equal proportions of clay and sand are best to prevent cracking or fragmenting of the bricks. Sometimes adobe is stabilized with a small amount of cement or asphalt emulsion to provide better weatherproofing. The blocks can either be poured into molds and dried, or pressed into blocks. Adobe colored with clay and polished with natural oil makes an attractive and resilient floor.

To protect the walls and reduce maintenance, adobe buildings usually have large overhanging eaves and sizeable foundations. Adobe can be plastered over with cob or lime-based mixes for both appearance and protection. Adobe has good thermal mass, meaning that it is slow to transmit heat or cold. It is not a good insulator, however, so insulation can be added (preferably on the outside), or a double wall built with airspace or insulation in between. The traditional thick, un-insulated adobe has proven to perform best in regions without harsh winters or where daily sun is predictably available during those cold periods.

Cob

File:Cob with living roof.jpg
A small cob building with a living roof

The term cob is used to describe a monolithic building system based on a mixture of clay, sand and straw. The construction uses no forms, bricks or wooden framework; it is built from the ground up. Various forms of "mud" building have been used in many parts of the world for centuries, under a variety of names, and date from at least 10,000 years ago. Cob building began use in England prior to the 13th century, and fell out of favor after World War I, although it is seeing a resurgence today. Cob is one of the simplest and least expensive building techniques available, though it is typically very labor-intensive. Cob's other great advantage is versatility; It can easily be shaped into any form. While cob building was falling out of favor in England by the late 19th century, thousands of cob structures have endured to the present (20,000 in Devon, England alone).[2] It is estimated that from one third to one half of the world's population lives in earthen dwellings today. Although typically associated with "low-rise" structures, in Yemen and other Middle-Eastern countries, it has, for centuries, been used in "apartment" buildings of eight stories and more[citation needed].

Cob-like mixes are also used as plaster or filler in several methods of natural building, such as adobe, earth bags, timber frames, cordwood, and straw bales. Earth is thus a primary ingredient of natural building.

Cordwood

File:Cordwoodhouse.jpg
A section of a cordwood home.

Cordwood construction is a term used for a natural building method in which "cordwood" or short lengths pieces of debarked tree are laid up crosswise with masonry or cob mixtures to build a wall. The cordwood, thus, becomes infill for the walls, usually between posts in a timber frame structure. Cordwood masonry can be combined with other methods (e.g., rammed earth, cob or light clay) to produce attractive combinations. Cordwood masonry construction provides a relatively high thermal mass, which makes it easy to heat and cool.

Earth bag

Earth is the most typical fill material used in bag-wall construction techniques. This building method utilizes stacked polypropylene or natural-fiber (burlap) bags filled with earth or other mixes, with or without a stabilizer such as portland cement, to form footings, foundations, walls and even vaulted or domed roofs. In recent years, building with earth bags has become one of the increasingly practiced techniques in natural building. It facilitates self-contained, often free-form rammed-earth structures. Its growing popularity relates to its use of an abundant and readily available often site-available material (earth) in a potentially inexpensive building technique that is flexible, and easy to learn and use. However, because earth is a poor insulator, in more extreme climates other filler variations are now being explored, substituting pumice, rice-hulls or another material with better insulating value for all or part of the earth (see also Rice-hull bagwall construction)

Rammed earth

Rammed earth is an earth-based wall system made of compacted gravel, sand, and clay; that is extremely strong and durable. Quality rammed earth walls are dense, solid, and stone-like with great environmental benefits and superior low maintenance characteristics[citation needed]. As an option depending on climate or seismic concerns rigid insulation can be placed inside the wall as well as steel reinforcement. Rammed earth has been used for around 10,000 years in all types of buildings from low rise to high-rise and from small huts to palaces.

Rammed earth walls are formed in place by pounding damp sub-soil (gravel, sand, and clay) into movable, reusable forms with manual or machine-powered tampers. A mixture of around 70% aggregate (gravel,sand) and 30% clay is optimal. Cement may be added if the mix requires it or pigmentation to achieve the desired color. Around 5-10 inches of mixed damp sub-soil are placed inside the forms and pounded to total compaction and the process is repeated until the desired height is achieved. What is left after the forms are removed is a wall that is structural and can last over 1000 years[citation needed].

Stone, granite, and concrete

File:Rock Lodge Stone House circa 1938.jpg
The model fireproof farm house built by engineer A. L. A. Himmelwright in 1907 and presently used as a residence and overnight rental facility at Rock Lodge Club, a nudist resort in Stockholm, New Jersey, USA.
Locally obtained stone has been used as natural construction material for centuries. Combined with modern engineering and materials such as concrete and steel, a durable, low-impact building can be constructed.

Straw bale

File:Strawbaleconstruction.jpg
Straw bale construction in Santa Cruz, CA

Although grasses and straw have been in use in a range of ways in building since pre-history around the world, their incorporation in machine-manufactured modular bales seems to date back to the early 20th century in the midwestern United States, particularly the sand-hills of Nebraska, where grass was plentiful and other building materials (even quality sods) were not. Straw bale building typically consists of stacking a series of rows of bales (often in running-bond) on a raised footing or foundation, with a moisture barrier between. Bale walls are often tied together with pins of bamboo, rebar, or wood (internal to the bales or on their faces), or with surface wire meshes, and then stuccoed or plastered, either with cementaceous mixes, lime-based formulations or earth/clay renders. Bale buildings can either have a structural frame of other materials, with bales between (simply serving as insulation and stucco substrate), referred to as "infill",or the bales may actually provide the support for openings and roof, referred to as "load-bearing" or "Nebraska-style", or a combination of framing and load-bearing may be employed, referred to a "hybrid" straw bale.

Typically, bales created on farms with mobile machinery have been used ("field-bales"), but recently higher-density "recompressed" bales (or "straw-blocks") are increasing the loads that may be supported; where field bales might support around 600 pounds per linear foot of wall, the high density bales bear up to 4,000 lb./lin.ft. and more. And the basic bale-building method is now increasingly being extended to bound modules of other often-recycled materials, including tire-bales, as well as those of cardboard, paper, plastics and used carpeting, and to bag-contained "bales" of wood-chips, rice-hulls, etc.

Timber frame

File:Timber frame.jpg
The completed frame of a modern timber frame home

The essential elements of timber frame building—joined timbers, clay walls and thatch roofs were in place in Europe and Asia by the 9th century. It remained the common mode of house construction in northern cultures until the 19th century. Craftsmanship was, and is, an important value in timber frame building. The oldest timber frame structures (for example, the timber framed stave churches of Scandinavia) show both craftsmanship and a strong grasp of the technical aspects of structural design, as do such structures in Japan.

Timber framing typically uses a "bent." A bent is a structural support, like a truss, consisting of two posts, a tie beam and two rafters. These are connected into a framework through joinery. To practice the craft, one must understand the basic structural aspects of the bent. This, along with a knowledge of joinery, are the basis of timber frame building.

Timber framing is now a modern method of construction, Ideally suited to mass house building as well as public buildings. In conjunction with a number of natural insulations and timber cladding or modern lime renders, it is possible to quickly construct a high performance, sustainable building, using completely natural products. The benefits are many—the building performs better over its lifespan, waste is reduced (much can be re-cycled, composted or used as fuel). Timber frame structures are frequently used in combination with other natural building techniques, such as cob, straw bale, or cordwood/masonry.

Related ideas and strategies

Other concepts, methods and strategies often (or sometimes) associated with natural building include: building "underground," earth sheltering, or berming, "green" or "living" planted roofs, thatched roofs and cement-free earthen floors, rubble-trench, or gabion foundations.

To increase sustainability, various approaches to lower energy consumption are used in conjunction with natural building: sun-shading or other passive cooling techniques, passive solar heating, geo-exchange heating and cooling, "short-cycle" and "annualized" passive (and PV-assisted) solar space and water heating, hot water heat recycling, biologic air purification by indoor plants, passive or air-to-air/heat-recovery ventilation, solar or annualized cooling, insulated glazing and selective glazing films, night and cold-weather "movable" insulation, or on-site electric power generation by renewable energy in the form of photovoltaics (PV), wind generators, or micro-hydro (either with fully independent systems referred to as "off-grid" or with "grid-tied" systems feeding into the public electric network), low-voltage electric and avoidance of electro-magnetic and other possibly harmful forms of radiation.

Other green building strategies that improve conservation of resources include: rain-water catchment, storage, and purification; waste-water separation; biological waste-water purification and grey-water reuse; composting toilets, on-site snow/rain-water run-off management, bioswales, permeable paving, native or low-water-use ("xeriscape") landscapes, and accommodation of alternative-fuelled/powered and human-powered vehicles.

See also

Lua error in package.lua at line 80: module 'Module:Portal/images/s' not found.

Notes

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Lynne Elizabeth, L., and Adams, C., eds. 2000. Alternative Construction, Contemporary Natural Building Methods pub. by John Wiley & Sons, inc. NY, NY
  • Kennedy, J., Smith, M. and Wanek, C. eds. 2002. The Art of Natural Building: Design, Construction, Resources. Gabriola Island, BC. New Society Publishers.
  • Evans, Ianto, Michael G. Smith, and Linda Smiley. 2003. The Hand-Sculpted House: A Practical and Philosophical Guide to Building a Cob Cottage. Chelsea Green Publishing.
  • Woolley T. 2006. Natural Building: A Guide to Materials and Techniques. Crowood Press.

External links

ar:مبنى طبيعي he:בנייה באדמה
  1. Smith, Michael G. "The Case for Natural Building," in Kennedy, Smith and Wanek (2002), 6.
  2. Smith, Michael G. "Cob Building, Ancient and Modern," in Kennedy, Smith and Wanek, (2002), 132-133.