4-Aminosalicylic acid
180px | |
180px | |
Systematic (IUPAC) name | |
---|---|
4-amino-2-hydroxy-benzoic acid | |
Clinical data | |
Pregnancy category |
|
Routes of administration | Oral |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Protein binding | 50–60% |
Metabolism | Hepatic |
Excretion | Renal |
Identifiers | |
CAS Number | 65-49-6 |
ATC code | J04AA01 (WHO) |
PubChem | CID 4649 |
DrugBank | APRD00749 |
ChemSpider | 4488 |
UNII | 5B2658E0N2 |
Chemical data | |
Formula | C7H7NO3 |
Molar mass | 153.135 g/mol[[Script error: No such module "String".]] |
Script error: No such module "collapsible list". | |
Physical data | |
Melting point | 150.5 °C (302.9 °F) |
(verify) |
4-aminosalicylic acid, commonly known as PAS, is an antibiotic used to treat tuberculosis. This organic compound has been use since the 1940s for the treatment of inflammatory bowel diseases (IBDs), where it has shown greater potency in ulcerative colitis and Crohn's disease. It is thought to act via NF-κB (nuclear factor-kappa B) inhibition and free radical scavenging. 5-Aminosalicylic acid, sold under the name mesalazine, is a closely related compound that also has medical uses.
Contents
Medical uses
Aminosalicylic acid was introduced to clinical use in 1948. It was the second antibiotic found to be effective in the treatment of tuberculosis, after streptomycin. PAS formed part of the standard treatment for tuberculosis prior to the introduction of rifampicin and pyrazinamide.[1]
Its potency is less than that of the current five first-line drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, and streptomycin) for treating tuberculosis, but it is still useful in the treatment of multidrug-resistant tuberculosis. PAS is always used in combination with other anti-TB drugs.
The dose when treating tuberculosis is 150 mg/kg/day divided into two to four daily doses; the usual adult dose is therefore approximately 2 to 4 grams four times a day. It is sold in the US as "Paser", which comes in the form of 4 g packets of delayed-release granules. The drug should be taken with acid food or drink (orange, apple or tomato juice).[2] PAS was once available in a combination formula with isoniazid called Pasinah.[3]
PAS has also been used in the treatment of inflammatory bowel disease,[4] but has been superseded by other drugs such as sulfasalazine and mesalazine.
Pharmacology
With heat, aminosalicylic acid is decarboxylated to produce CO2 and 3-aminophenol.
The U.S. FDA assigned PAS to pregnancy category C, indicating that it is not known whether it will harm an unborn baby.
Side effects
Gastrointestinal side-effects (nausea, vomiting, diarrhoea) are common; the delayed-release formulation is meant to help overcome this problem. It is also a cause of drug-induced hepatitis. Patients with glucose-6-phosphate dehydrogenase deficiency should avoid taking aminosalicylic acid as it causes haemolysis. Thyroid goitre is also a side-effect because aminosalicylic acid inhibits the synthesis of thyroid hormones. Drug interactions include elevated phenytoin levels. When taken with rifampicin, the levels of rifampicin in the blood fall by about half.[5]
History
PAS was discovered by the Swedish chemist Jörgen Lehmann upon the report that the tuberculosis bacterium avidly metabolized salicylic acid. Lehmann first tried PAS as an oral TB therapy late in 1944. The first patient made a dramatic recovery. The drug proved better than streptomycin, which had nerve toxicity and to which TB could easily develop resistance. Late in the 1940s, researchers at Britain's Medical Research Council demonstrated that combined treatment with streptomycin and PAS was superior to either drug alone. Aminosalicylic acid is sold in the U.S. by Jacobus Pharmaceutical as Paser.
Synthesis
PAS is manufactured by the carboxylation of 3-aminophenol.[6]
Other names
Like many commercially significant compounds, PAS has many names including para-aminosalicylic acid, p-aminosalicylic acid, 4-ASA, and simply P.
External links
References
Cite error: Invalid <references>
tag;
parameter "group" is allowed only.
<references />
, or <references group="..." />
fr:Acide para-aminosalycilique it:Acido 4-amminosalicilico nl:Para-aminosalicylzuur pl:Kwas p-aminosalicylowy sv:Paraaminosalicylsyra
ru:Пара-аминосалициловая кислота- ↑ Mitchison DA (2000). "Role of individual drugs in the chemotherapy of tuberculosis Role of individual drugs in the chemotherapy of tuberculosis". Int J Tuberc Lung Dis. 4 (9): 796–806. PMID 10985648.
- ↑ "Paser". RxList. Retrieved 2008-10-10.
- ↑ Smith NP, Ryan TJ, Sanderson KV, Sarkany I (1976). "Lichen scrofulosorum: A report of four cases". Br J Dermatol. 94 (3): 319–325. doi:10.1111/j.1365-2133.1976.tb04391.x. PMID 1252363.
- ↑ Daniel F, Seksik P, Cacheux W, Jian R, Marteau P (2004). "Tolerance of 4-aminosalicylic acid enemas in patients with inflammatory bowel disease and 5-aminosalicylic-induced acute pancreatitis". Inflamm Bowel Dis. 10 (3): 258–260. doi:10.1097/00054725-200405000-00013. PMID 15290921.
- ↑ Boman G (1974). "Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid". European journal of clinical pharmacology. 7 (3): 217–25. doi:10.1007/BF00560384. PMID 4854257.
- ↑ Mitchell, S.C. & Waring, R.H. “Aminophenols.” In Ullmann’s Encyclopedia of Industrial Chemistry; 2002 Wiley-VCH, doi:10.1002/14356007.a02_099
- Pages using duplicate arguments in template calls
- Pages with script errors
- Pages with broken file links
- Infobox drug tracked parameters
- Articles without EBI source
- Articles without KEGG source
- Articles without InChI source
- Tuberculosis
- Antibiotics
- World Health Organization essential medicines
- Aromatic amines
- Salicylic acids
- 2Fix
- CS1 maint: Multiple names: authors list